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This note introduces a mathematical derivation of the heat conduction model that incorporates boundary
conditions. In particular, in the present approach boundary conditions are derived in parallel to the heat
equation, while in the standard approach to heat conduction modelling they are appended at a later
stage. Because of its peculiar mathematical formulation, this method allows modelling heat sources or
sinks placed on the boundary. Furthermore, it is shown that when such heat sources depend linearly
on the surface temperature and the heat flux, each of their points can be described as a point source
emitting a heat wave directed into an infinitesimal volume in the neighbourhood of the surface.
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1. Introduction

The diffusion of heat, or heat conduction, is a subject
extensively discussed both in the classic [1,2] and in the modern
[3–5] scientific literature, as well as in heat transfer textbooks
[6–8]. As such, one may think there is not much left to say about
it. On the contrary, heat conduction is still a rich source of
challenging problems for the mathematician, the physicist and
the engineer. Examples are the well-known paradox of infinite
propagation speed [9–12], and the relation of heat conduction with
general variational theorems [13,14].

The standard derivation of any heat conduction model is based
on the conservation of energy in a given material domain, which is
usually chosen as a sub-set of an Euclidean space ðX # RnÞ,
surrounded by a smooth boundary, oX. If J represents the heat flux,
the total heat rate going out of the domain is:Z

oX
J � ndS ð1Þ

where n is the outward unit vector normal to oX, and dS the surface
measure on the boundary. Thus, defining q as the heat stored in the
unit volume, one can write the conservation of heat in integral
form:

d
dt

Z
X

qdV ¼ �
Z

oX
J � ndS ð2Þ

which after applying the divergence theorem to the surface integral
becomes:

d
dt

Z
X

qdV ¼ �
Z

X
r � JdV ð3Þ
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Assuming that the stored heat can be described by a sufficiently
smooth function, one can move the derivative under the sign of
integral and write:
Z

X

oq
ot

dV ¼ �
Z

X
r � JdV ð4Þ

which yields immediately the conservation equation in differential
form:

oq
ot
¼ �r � J ð5Þ

The model is completed by a phenomenological constitutive
equation, the well-known Fourier’s law, which establishes a linear
relationship between the heat flux and the temperature gradient
(note that this is no longer true in hyperbolic conduction models
[9,10]):

J ¼ �krT ð6Þ

Combining Eq. (5) with Eq. (6), and assuming that the stored heat is
proportional to temperature (i.e., q = qCT), for a material with
constant thermophysical properties one obtains the well-known
parabolic equation:

oT
ot
¼ arT ð7Þ

where a = k/qC is the thermal diffusivity.
The solution of Eq. (7) can be obtained after supplying appropri-

ate initial and boundary conditions, which in the most general case
may be a function of time. However, in most practical cases the
time dependence can be neglected, so that in the heat transfer
literature the following three boundary conditions are usually
considered:
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Nomenclature

C specific heat
J heat flux
k thermal conductivity
n outward unit vector normal to the surface
q thermal energy per unit volume
r, r0 curvilinear coordinate
t time
T temperature
x position vector

Greek symbols
a thermal diffusivity
U function representing a fictitious heat source
q density
x real parameter
X material volume
oX material volume boundary
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1. Dirichlet boundary condition: T(x, t) = f(x) for x 2 oX and t > 0.
2. Neumann boundary condition: oTðx;tÞ

on ¼ f ðxÞ for x 2 oX and t > 0.
3. Robin boundary condition: b oTðx;tÞ

on þ cTðx; tÞ ¼ f ðxÞ for x 2 oX
and t > 0.

The identification of a unique solution also requires setting the
initial condition, T(x,0) = T0(x), for x 2 oX. Note that the debate
on the classification of boundary conditions for the heat equation
is still open [15].

Thus, in the standard derivation of the heat conduction model
reviewed above, one finds a solution in differential form for any
point within the material domain, and boundary conditions are
appended at a later stage.

This paper introduces an alternative approach to heat conduc-
tion modelling, where boundary conditions arise within the math-
ematical model in parallel to the heat equation, generating a
system of two differential equations (one which holds within the
material domain and one which holds on the boundary) to be
solved simultaneously. In particular, one of these equations can
be reduced to any of the standard boundary conditions (named
after Dirichlet, Neumann, and Robin) with the appropriate choice
of one parameter. A peculiar feature of this approach is the
capability of modelling heat sources or sinks placed exactly on
the boundary in a formally rigorous way, which is not possible
using the conventional approach.
2. Analysis

2.1. Problem formulation

The standard derivation of the heat conduction model outlined
above can be re-formulated assuming ab initio the presence of a
fictitious heat source on the boundary, described by a general
function U = U(t,x,T,DT,D2T), where the notation DT, D2T is used
to indicate the first and second derivatives of temperature.

To account for the heat source on the boundary, one can
introduce the measure space ðX;dlÞ, defined as the Cartesian
product between the measure spaces of the region X and its
boundary, oX:

X;dl
� �

¼ ðX;dxÞ � ðoX;dSÞ ð8Þ

The rate of change of the heat stored in the region X is now:

d
dt

Z
X

qdl ð9Þ

while the outgoing heat rate is given as usual by Eq. (1). Moving the
derivative in Eq. (9) under the sign of integral and applying the
divergence theorem to Eq. (1), one can write the conservation equa-
tion in integral form as:Z

X

oq
ot

dl ¼ �
Z

X
r � JdV þ

Z
oX

Uðt; x; T;DT;D2TÞdS ð10Þ
Introducing the constitutive models for the heat flux (J = �krT) and
the internal energy (q = qCT), and decomposing the domain X, one
obtains an equation containing two volume and two surface
integrals:Z

X

o

ot
ðqCTÞdV þ

Z
oX

o

ot
ðqcTÞdS

¼
Z

X
kr2T dV þ

Z
oX

Uðt;x; T;DT;D2TÞdS ð11Þ

However, equating the volume integrals yields as usual Eq. (7), so
that Eq. (11) reduces to:Z

oX

o

ot
ðqCTÞ �U t;x; T;DT;D2T

� �� �
dS ¼ 0 ð12Þ

Eq. (12) holds when the following equation is true on oX and for
t > 0:

oT
ot
¼ 1

qC
Uðt; x; T;DT;D2TÞ ð13Þ

One can show that all of the standard boundary conditions listed
above can be represented by Eq. (13), with suitable choices of the
function U(t,x,T,DT,D2T). For example, one can reduce Eq. (13) to
the Dirichlet boundary condition by setting U(t,x,T,DT,D2T) � 0:
in fact, this means that oT/ot = 0, so that T(x, t) = T0(x) for x 2 oX.

The Neumann boundary condition can be obtained by
introducing an arbitrary function of time:

Uðt;x; T;DT;D2TÞ ¼ qCgðtÞ ð14Þ

In this case, Eq. (13) yields oT/ot = g(t) for x 2 oX, and taking the
gradient one finds that:

r oT
ot

� 	
¼ o

ot
rT ¼ 0 ð15Þ

hence rT and oT/on are a function of the spatial coordinate only, as
required by the Neumann condition.

Finally, one can obtain the Robin boundary condition with the
following choice:

Uðt;x; T;DT;D2TÞ ¼ qCgðtÞ expðxrÞ ð16Þ

where x is a real parameter, and r is the coordinate along the line L
that passes through the point x and contains the vector n (r > 0 for
points on L \X). With this choice, Eq. (13) becomes:

oT
ot
¼ gðtÞ expðxrÞ ð17Þ

Taking the derivative with respect to the coordinate r, one finds:

o

on
oT
ot

� 	
¼ o

ot
oT
on

� 	
¼ xgðtÞ expðxrÞ ð18Þ

which holds on L \X; introducing Eq. (17) shows that on the
boundary oX:
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o

ot
oT
on

� 	
¼ x

oT
ot

ð19Þ

and one can conclude that for x 2 oX:

oT
on
�xT ¼ f ðxÞ ð20Þ

In general, one can show that all of these boundary conditions can
be described by means of the function defined in Eq. (16), for appro-
priate choices of the parameter x, and in particular:

� x = �1: Dirichlet boundary condition.
� x = 0: Neumann boundary condition.
� x < 0: dissipative Robin boundary condition.
� x > 0: non-dissipative Robin boundary condition.

While the examples listed above refer to the simplified cases of
boundary conditions not dependent on time, time-dependent
boundary conditions can also be described by Eq. (13) with appro-
priate choices of the arbitrary function.

2.2. Modelling heat sources on the boundary

The function U = U(t,x,T,DT,D2T) introduced above has been
defined as a fictitious heat source on the boundary. Thus, the
mathematical formulation of heat conduction introduced above
can be used to study the case of a heat source placed on the
boundary, which cannot be described using the standard boundary
conditions. Without loss of generality, one can assume that such
heat source depends linearly both on the temperature of the
boundary and on the heat flux through it, so that:

1
qC

Uðt;x; T;DT;D2TÞ ¼ �bðxÞ oT
on
þ cðxÞT ð21Þ

where b(x) > 0 corresponds to a heat source, and b(x) < 0 to a heat
sink. From Eq. (13), one can write the boundary condition on oX as:

oT
ot
¼ �bðxÞ oT

on
þ cðxÞT ð22Þ

For simplicity, one can start the analysis with c(x) = 0, to obtain
from Eq. (22):

oT
ot
þ bðxÞ oT

on
¼ 0 ð23Þ

Consider an infinitesimal region on the boundary, where for any
point x 2 oX, Be(x) denotes the ball of radius e about x. Because
oX is a regular surface, one can choose a coordinate system
for BeðxÞ \X such that the boundary of BeðxÞ \X in the transformed
coordinates is flat, and the point x is mapped to ~x ¼ ðx1; . . . ; xn�1;0Þ;
in other words, in the neighbourhoods of x the boundary lies in the
hyperplane xn = 0. In these coordinates, the outward unit normal to
oX in the point x is the unit vector en, which will form a certain an-
gle with the outward unit normal vector in the old coordinates, n,
and r0 is the coordinate along the line containing en. In the trans-
formed local coordinate system, the boundary condition expressed
by Eq. (23) writes:

oT
ot
þ bðxÞ oT

or0
¼ 0 ð24Þ

The well-known general solution of this equation represents a one-
dimensional wave which is directed into the domain X for bð~xÞ > 0,
and is given by:

Tð~x; tÞ ¼ ~f r0 � bð~xÞt½ � ð25Þ
where ~f ð�Þ is a generic function. Mapping back to the original
coordinate system, the solution of Eq. (23) is:

Tðx; tÞ ¼ f ½x� bðxÞtn� ð26Þ

Using similar arguments, one can find the solution for Eq. (22) with
c(x) – 0, which turns out to be in the form of another travelling
wave, modulated by an exponential term:

Tðx; tÞ ¼ exp½�cðxÞt�f ½x� bðxÞtn� ð27Þ

These solutions show that in heat conduction problems a heat
source placed exactly on the boundary and linearly dependent both
on the boundary temperature and on the heat flux through it can be
described as an ensemble of points which generate heat waves
directed into an infinitesimal layer near the boundary.
3. Conclusions

The standard procedure to obtain the well-known mathemati-
cal model of heat conduction has been revisited to incorporate
boundary conditions, which are usually introduced separately after
the heat equation has been derived in differential form. In particu-
lar, the global energy balance has been re-written to include ab
initio a fictitious heat source on the boundary, and decoupled into
two differential equations which hold, respectively, inside the
material domain and on its boundary.

The proposed formulation of the heat conduction problem
allows one to describe all of the three standard boundary condi-
tions (Cauchy, Neumann, and Robin) using the same mathematical
expression, where only the value of a single parameter changes. In
addition, this model can account for heat sources or sinks placed
on the boundary. When such heat sources are described by func-
tions that depend linearly on the local temperature and the heat
flux on the boundary, each of their points can be represented as
the source of a heat wave that propagates into an infinitesimal
layer near the boundary itself.
References

[1] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, second ed., Oxford
University Press, Oxford, 1986.

[2] A.V. Luikov, Analytical Heat Diffusion Theory, Academic Press, New York, 1968.
[3] S. Kacac, Y. Yener, Heat Conduction, third ed., Taylor & Francis, Bristol, 1993.
[4] R.M. Cotta, M.D. Mikhailov, Computational and Analytical Heat Conduction,

Wiley, Hoboken, NJ, 1997.
[5] L. Wang, X. Zhou, X. Wei, Heat Conduction: Mathematical Models and

Analytical Solutions, Springer, Berlin, 2007.
[6] F. Incropera, P. De Witt, Fundamentals of Heat and Mass Transfer, third ed.,

Wiley, New York, 1990.
[7] F. Kreith, M.S. Bohn, Principles of Heat Transfer, sixth ed., Brooks-Cole, New

York, 2000. pp. 233–472.
[8] J.R. Welty, C.E. Wicks, R.E. Wilson, G. Rorrer, Fundamentals of Momentum,

Heat, and Mass Transfer, fourth ed., Wiley, New York, 2001.
[9] P. Vernotte, Les paradoxes de la theorie continue de l’equation de la chaleur, CR

Hebd. Acad. Sci. 246 (1958) 3154–3155.
[10] C. Cattaneo, Sur une forme de l’equation de la chaleur eliminant le paradoxe

d’une propagation instantanée, CR Hebd. Acad. Sci. 247 (1958) 431–433.
[11] D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1989) 41–73;

, Rev. Mod. Phys. 62 (1990) 375–391 (addendum).
[12] V. Bertola, E. Cafaro, On the speed of heat, Phy. Lett. A 372 (2007) 1–4.
[13] P. Palffy-Muhoray, Comment on ‘‘A check of Prigogine’s theorem of minimum

entropy production in a rod in a non-equilibrium stationary state” by Irena
Danielewicz-Ferchmin and A. Ryszard Ferchmin, Am. J. Phys. 69 (7) (2001)
825–826.

[14] V. Bertola, E. Cafaro, A critical analysis of the minimum entropy production
theorem and its application to heat and fluid flow, Int. J. Heat Mass Transfer 51
(2008) 1907–1912.

[15] A.F. Khadrawi, M.A. Al-Nimr, A generalized thermal boundary condition for the
parabolic heat conduction model, Int. J. Heat Technol. 22 (2004) 171–178.


	Incorporating boundary conditions in the heat conduction model
	Introduction
	Analysis
	Problem formulation
	Modelling heat sources on the boundary

	Conclusions
	References


